
PatchFinder: A Two-Phase Approach to Security Patch Tracing
for Disclosed Vulnerabilities in Open-Source So�ware

Kaixuan Li
East China Normal University

Shanghai, China
Continental-NTU Corporate Lab,
Nanyang Technological University

Singapore, Singapore
kaixuan.li@ntu.edu.sg

Jian Zhang∗

Nanyang Technological University
Singapore, Singapore
jian_zhang@ntu.edu.sg

Sen Chen
College of Intelligence and

Computing, Tianjin University
Tianjin, China

senchen@tju.edu.cn

Han Liu
Shanghai Key Laboratory of

Trustworthy Computing, East China
Normal University
Shanghai, China

hanliu@stu.ecnu.edu.cn

Yang Liu
Nanyang Technological University

Singapore, Singapore
yangliu@ntu.edu.sg

Yixiang Chen
Shanghai Key Laboratory of

Trustworthy Computing, East China
Normal University
Shanghai, China

yxchen@sei.ecnu.edu.cn

Abstract

Open-source software (OSS) vulnerabilities are increasingly preva-

lent, emphasizing the importance of security patches. However, in

widely used security platforms like NVD, a substantial number of

CVE records still lack trace links to patches. Although rank-based

approaches have been proposed for security patch tracing, they

heavily rely on handcrafted features in a single-step framework,

which limits their e�ectiveness.

In this paper, we propose PatchFinder, a two-phase framework

with end-to-end correlation learning for better-tracing security

patches. In the initial retrieval phase, we employ a hybrid patch

retriever to account for both lexical and semantic matching based

on the code changes and the description of a CVE, to narrow down

the search space by extracting those commits as candidates that

are similar to the CVE descriptions. Afterwards, in the re-ranking

phase, we design an end-to-end architecture under the supervised

�ne-tuning paradigm for learning the semantic correlations be-

tween CVE descriptions and commits. In this way, we can automat-

ically rank the candidates based on their correlation scores while

maintaining low computation overhead. We evaluated our system

against 4,789 CVEs from 532 OSS projects. The results are highly

promising: PatchFinder achieves a Recall@10 of 80.63% and a Mean

Reciprocal Rank (MRR) of 0.7951. Moreover, the Manual E�ort@10

required is curtailed to 2.77, marking a 1.94 times improvement over

current leading methods. When applying PatchFinder in practice,

we initially identi�ed 533 patch commits and submitted them to

∗Corresponding author.

ISSTA ’24, September 16–20, 2024, Vienna, Austria

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0612-7/24/09
https://doi.org/10.1145/3650212.3680305

the o�cial, 482 of which have been con�rmed by CVE Numbering

Authorities.

CCS Concepts

• Security and privacy → Software security engineering; •

Information systems→ Language models.

Keywords

Security patches, Patch ranking, Large language models

ACM Reference Format:

Kaixuan Li, Jian Zhang, Sen Chen, Han Liu, Yang Liu, and Yixiang Chen.

2024. PatchFinder: A Two-Phase Approach to Security Patch Tracing for

Disclosed Vulnerabilities in Open-Source Software. In Proceedings of the 33rd

ACM SIGSOFT International Symposium on Software Testing and Analysis

(ISSTA ’24), September 16–20, 2024, Vienna, Austria. ACM, New York, NY,

USA, 13 pages. https://doi.org/10.1145/3650212.3680305

1 Introduction

Open-source software (OSS) is fundamental to the industrial applica-

tions and software community. This widespread adoption, however,

comes with security challenges. The open and accessible nature

of OSS has inadvertently led to a surge in security vulnerabili-

ties [25, 50, 52]. The notorious vulnerabilities such as Log4Shell [8]

and Spring4Shell [6] have put millions at risk of data theft and

service denials, reducing trust in the OSS ecosystem.

To facilitate understanding and remediation for vulnerabilities,

public security platforms, including the Common Vulnerabilities

and Exposures (CVE) and the National Vulnerability Database

(NVD), provide details (e.g., descriptions [15]) on disclosed soft-

ware vulnerabilities and links to relevant patches for mitigation.

However, a recent study revealed that almost 57% of CVEs lack

trace links to patches, and only 12% of commits in OSS reference

the corresponding CVE-IDs [39]. One fact is that the maintainers

(e.g., CVE Numbering Authorities, CNAs) may not update the trace

link on CVE/NVD even though the vulnerability has been �xed.

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

590

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3650212.3680305
https://doi.org/10.1145/3650212.3680305
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3650212.3680305&domain=pdf&date_stamp=2024-09-11

ISSTA ’24, September 16–20, 2024, Vienna, Austria Kaixuan Li, Jian Zhang, Sen Chen, Han Liu, Yang Liu, and Yixiang Chen

This emphasizes the urgent necessity of security patch tracing to

enhance the platforms’ utility for developers and users.

Yet, pinpointing the exact security patches remains a signi�cant

challenge. These patches, which are commits made by OSS devel-

opers, are sparsely dispersed throughout individual code reposi-

tories. For instance, as of September 2023, the Linux kernel has

over 1,215,313 commits, but typically only one of those commits

is the patch for a vulnerability. Previous e�orts have attempted to

search them by leveraging auxiliary information from vulnerability

databases, like CVE-IDs in commits [21, 31] and external reference

URLs from CVE/NVD pages [48]. However, as evident from the

aforementioned statistics, these methods often fall short due to

their matching-based nature.

In response to this challenge, the research community has shifted

to rank-based methods to pair vulnerabilities with patches. Patch-

Scout [39] and VCMatch [43] are two representative works that

build on pair-wise ranking and point-wise ranking respectively.

The common practice involves manually de�ning and extracting

features from descriptions and commits, for example, the number

of shared words between the description and commit message. Sub-

sequently, the resulting feature vector is used to train a ranking

model or classi�er. While these rank-based methods o�er advan-

tages over traditional matching-based techniques, they also have a

set of limitations. First, these methods predominantly depend on

handcra�ed features and neglect the rich semantic information.

Concretely, ① existing models like PatchScout and VCMatch rely

heavily on direct lexical matches (20/22 and 34/36, respectively).

The predominantly word-based similarities fall short of captur-

ing semantics including semantic-equivalent phrases and implicit

patch information from both sides (CVE descriptions & Commits).

② While two unsupervised features used in existing works provide

some bene�ts, they are not task-speci�c and cannot fully capture

the varying correlations of semantics that are crucial for the task.

This limitation can compromise their e�ectiveness and generality.

Second, due to the vast gap between the number of developmen-

tal commits and security patches, existing approaches cannot be

easily adapted to learn supervised features. The current single-step

framework, which involves either directly ranking or classifying

commits, presents challenges in e�ectively training a supervised

learning model for the identi�cation of potential patches.

In this paper, we introduce a two-phase framework including ini-

tial retrieval and re-ranking, which enables us to learn supervised

semantics between commits and CVE descriptions in an end-to-

end manner. Our approach, namely PatchFinder, leverages both

strengths of Information Retrieval (IR) and Large Language Models

(LLMs) to capture lexical and semantic information and commit-

related domain knowledge from the two phases respectively. In the

initial retrieval phase, we employ a hybrid commit retriever for

narrowing down the search space, which consists of TF-IDF (Term

Frequency-Inverse Document Frequency) [2] and a pre-trained

CodeReviewer. That is, we extract commit candidates that are lexi-

cally and semantically similar to the CVE descriptions. In this way,

we can sharply narrow the gap as previously discussed. Certainly,

this algorithm cannot perfectly understand the correlations. Never-

theless, the re�ned dataset allows us to mitigate it via supervised

learning, which fundamentally di�ers from existing approaches. In

the re-ranking phase, inspired by the success of LLMs on Natural

Language Processing (NLP) tasks, we take the CodeReviewer as

the foundation model that is tailored speci�cally for understand-

ing code changes. To unlock its potential, we design an end-to-

end architecture under the �ne-tuning paradigm [16] for learning

the semantic correlations between CVE descriptions and commits.

Speci�cally, we simultaneously encode the description and one

commit (including its message and code di�) to obtain two vector

representations from the �nal layer of the CodeReviewer encoder.

The vectors are subsequently concatenated into a single vector,

which is then fed into a linear classi�er to determine whether they

are related or not. Together, the hybrid candidate retrieval using

TF-IDF and pre-trained CodeReviewer, combined with the semantic

correlation captured by �ne-tuned CodeReviewer, provides a robust

solution to the challenge of tracing security patches.

To comprehensively evaluate our approach, we enrich existing

datasets by incorporating newly released CVEs from CVE/NVD,

enlarging the dataset from 1,669 to 4,789 CVE entries (4870 patch

commits). We then perform extensive experiments on this expanded

dataset. The experimental results show that PatchFinder is highly

e�ective and signi�cantly outperforms all baselines. Speci�cally,

PatchFinder boasts a Recall@10 of 80.63% and a Mean Reciprocal

Rank (MRR) of 0.7951. Moreover, the Manual E�orts@10 in real-

world scenarios are curtailed to just 2.77, marking a notable im-

provement over the state-of-the-art (SOTA) by 1.94 times. Notably,

when deployed in real-world projects, PatchFinder successfully

identi�ed 533 new security patches with an average rank of 1.65.

Of these, 482 has been con�rmed by CNAs.

Our main contributions are as follows.

• We present a two-phase framework for security patch locating: a

hybrid initial retrieval phase to re�ne the search space, followed

by a re-ranking phase to learn the correlations between CVE

descriptions and patches.

• We design PatchFinder, a comprehensive system that combines

the strengths of TF-IDF and CodeReviewer to e�ectively retrieve

potential patch commits while capturing supervised semantics

from both descriptions and commits.

• Through extensive evaluations against 4, 789 CVEs from 532 OSS

projects, we demonstrate the e�ectiveness of PatchFinder with a

Recall@10 of 80.63% and an MRR of 0.7951, outperforming state-

of-the-art methods and reducing manual e�orts signi�cantly.

Additionally, with the help of PatchFinder, we found and sub-

mitted 533 new security patches for the CVE o�cial, of which

482 ones have been con�rmed and updated by the CNAs.

• We have released all of our code and data on our website [46]

for reproduction and further research.

2 Background and Motivation

2.1 Large Language Models (LLMs)

Pre-trained language models like BERT [7], GPT [33], Llama2 [42],

and T5 [34] have signi�cantly advanced NLP tasks. These models

adopt a pre-training and then �ne-tuning paradigm to develop trans-

ferable language representations. This paradigm has been adapted

to programming languages with models such as CodeBERT [9],

CodeLlama [37], CodeT5 [45], and CodeReviewer [23]. These mod-

els have demonstrated remarkable e�ectiveness, achieving SOTA

591

PatchFinder: A Two-Phase Approach to Security Patch Tracing for Disclosed Vulnerabilities in Open-Source So�ware ISSTA ’24, September 16–20, 2024, Vienna, Austria

performance on various code-related tasks and signi�cantly im-

proving code understanding and generation capabilities.

In speci�c, CodeReviewer [23] is a pre-trained Transformer-

based encoder-decoder language model based on CodeT5 [45]. It

was pre-trained with code change and code review data collected

from OSS projects on GitHub to support code review tasks for the

nine most popular programming languages. Compared with other

LLMs, CodeReveiwer has the following characteristics: 1) Purpose-

built for Code Change Analysis: Unlike general-purpose models

or those optimized for a broader range of tasks, CodeReviewer

is speci�cally tailored for analyzing code changes. This makes it

an apt choice for understanding the semantics of commits, which

is pivotal for our task. 2) Pre-training on CodeT5: CodeReviewer’s

foundation on CodeT5 means it has bene�ted from vast amounts of

code data during its pre-training phase. This gives it a knowledge

advantage over other models that might not have had access to

similar training data or might not be as recent as CodeT5.

2.2 Problem De�nition

Since it is labor-intensive to trace the security patches for disclosed

software vulnerabilities of CVEs, our objective is to design a model

that can automatically identify the patches from OSS projects. We

view the process as a ranking problem that ranks the commits

in OSS projects based on their correlations with reported CVEs.

Ideally, when provided with a CVE, the model should rank the

associated security patch as high as possible. The model could take

the CVE description, commit messages, and code changes (di�s) as

input. It then generates a ranked list of commits for the given CVE,

indicating the likelihood of each commit being the relevant patch.

Input Data: CVE Descriptions and Commits. Let D be the set of

CVE descriptions, such that D = {31, 32, . . . , 3 |D | }. For each de-

scription 38 in D, we have a corresponding set of commits C8 =

{21, 22, . . . , 2 | C8 | }. Each commit 2 9 in C8 is represented as a tuple

containing its message and code di�, i.e., 2 9 = (<B6 9 , 38 5 59).

Output Data: Ranked Commits. For a given CVE description 38 and

its associated commits in C8 , the model produces a ranking vector

R8 = [A1, A2, . . . , A | C8 |]. This vector indicates the likelihood of each

commit being the patch for 38 , allowing the commits to be sorted

based on their rankings.

2.3 Motivating Example

The example in Listing 1 illustrates the challenge of associating

a CVE description with its corresponding patch commit [3]. The de-

scription for CVE-2015-1867 [30] (Line 2) hints at a vulnerability in

pacemaker for versions below 1.1.13, but lacks speci�cs such as its

exact location including the function name or �le name. Moreover,

the commit message (Lines 5-6) provides a hint about the root cause

but expresses it di�erently and does not mention the exploitation of

the vulnerability. Existing SOTA tools like PatchScout and VCMatch

predominantly rely on commit messages, prede�ned vulnerability

type mappings, and handcrafted features [39, 43]. Such an approach

can be limiting, especially when faced with ambiguous CVE descrip-

tions that do not directly match commit messages. Solely relying

on token-based features without considering the semantic nuances

present in the message and di� can lead to inaccuracies.

1 CVE description of CVE -2015 -1867:

2 Pacemaker before 1.1.13 does not properly evaluate added nodes ,

which allows remote read -only users to gain privileges via

an acl command.

3 **

4 Commit message:

5 Fix: acl: Do not delay evaluation of added nodes in some

situations

6 It is not appropriate when the node has no children as it is

not a placeholder

7
8 Code diff:

9 diff --git a/lib/common/xml.c b/lib/common/xml.c

10 index f3dd35b7a ..716 f053f8 100644

11 --- a/lib/common/xml.c

12 +++ b/lib/common/xml.c

13 @@ -1020,13 +1020 ,16 @@ __xml_acl_post_process(xmlNode * xml)

14 + char *path = xml_get_path(xml);

15 - /* Always allow new scaffolding , ie. node with no

16 - attributes or only an 'id ' */

17 + /* Always allow new scaffolding , ie. node with no

18 + attributes or only an 'id ' Except in the ACLs section

19 + */

20 - if (strcmp(prop_name , XML_ATTR_ID) == 0) {

21 + if (strcmp(prop_name , XML_ATTR_ID) == 0 &&

22 + strstr(path , "/" XML_CIB_TAG_ACLS "/") == NULL) {

23 @@ -1035,7 +1038 ,6 @@ __xml_acl_post_process(xmlNode * xml)

24 - char *path = xml_get_path(xml);

25 @@ -1046,6 +1048 ,7 @@ __xml_acl_post_process(xmlNode * xml)

26 + free(path);

Listing 1: A motivating example for CVE-2015-1867.

In contrast, a more in-depth analysis of the commit, as demon-

strated in our motivating example, reveals critical semantic insights

that are essential for accurate tracing. Speci�cally, in Line 14 and

Line 26, there is an addition of a new variable path which retrieves

the path of the XML node. This suggests that the location or con-

text of the XML node in the document might be signi�cant for

the �x. It then modi�es a comment to specify an exception for

the ACLs section (Lines 15-19), indicating that the behavior of al-

lowing new sca�olding nodes is being re�ned. The condition in

Lines 20-22 is enhanced to include a check that ensures the current

XML path is not within the ACLs section, as indicated by the string

XML_CIB_TAG_ACLS. This is a direct response to the vulnerability

mentioned in the CVE description, which allows privileges escalation

via an acl command. The removal of the path variable assignment

is shown at Line 24, which is now redundant due to its declaration

and assignment at the beginning of the block.

It is evident that while the commit message primarily re�ects

the CVE description, the semantic information in the code di�

provides a clearer picture of how the vulnerability is addressed.

This underscores the importance of analyzing complex semantics

from code di�s in conjunction with commit messages to accurately

link CVE descriptions with their corresponding patches.

3 Approach

3.1 Overview

In this section, we present an overview of our approach designed

to trace security patches for disclosed vulnerabilities from the

NVD/CVE websites. As highlighted in earlier discussions, the pri-

mary challenge lies in the implicit correlations between CVE de-

scriptions and commits, which necessarily require understanding

the semantics of both sides. Theoretically, we recognized the chal-

lenges posed by direct retrieval using a �ne-tuned LLM in extensive

592

ISSTA ’24, September 16–20, 2024, Vienna, Austria Kaixuan Li, Jian Zhang, Sen Chen, Han Liu, Yang Liu, and Yixiang Chen

TF-IDF Retriever

Ranked Commits

Retrieve

Fine-tuning

Top K Commits
Security Expert

Phase 1: Initial Retrieval via Hybrid Retriever

Phase 2: Re-ranking via Fine-tuning CodeReviewer

CVE Description

Commits
CodeReviewer Retriever

Hybrid Retriever

CVE Description

Pretrained

Lexical-based

Semantic-based

Patch Commits

Unrelated Commits

Figure 1: Overview of our approach.

while extremely imbalanced datasets could di�use the model’s at-

tention, reducing its e�ectiveness in accurately identifying relevant

patches. To minimize the training loss, the features of the minority

class (i.e. security patches) are easily treated as noise and are often

ignored. Thus, there is a high probability of misclassi�cation of the

minority class as compared to the majority class (i.e. non-patch

commits). Modifying the loss function alone results in a substantial

computational burden during the �ne-tuning process of LLMs on

datasets exceeding 20 million entries.

To tackle these drawbacks, as illustrated in Figure 1, we propose

a novel two-phase framework called PatchFinder, comprising ini-

tial retrieval and re-ranking. Initially, we retrieve the top candidates

of patches from the commits based on lexical and semantic infor-

mation, which helps eliminate a majority of unrelated commits,

such as developmental code changes. On top of that, we design an

end-to-end architecture based on LLMs to e�ectively capture the

precise semantics of CVE descriptions and commits. Technically,

in the initial retrieval phase, we commence by preprocessing the

CVE descriptions, commit messages, and code di�s. Subsequently,

we employ the TF-IDF and pre-trained CodeReviewer to compute

similarity scores between the given CVE description and each code

commit at lexical and semantic levels, respectively. Note that this

phase is not merely a preliminary step for narrowing down the

search space but is critical for ensuring that the re-ranking phase

can operate with enhanced focus and accuracy (further details

in Section 3.2). Transitioning to the re-ranking phase, we harness

the capabilities of LLMs, speci�cally CodeReviewer, which was

pre-trained for code change analysis and defect understanding [23].

By �ne-tuning CodeReviewer with the top : commits retrieved in

the initial retrieval phase, we aim to deeply comprehend the code

semantics present within each code commit. This is particularly

crucial for discerning nuances related to security patches (details

in Section 3.3).

3.2 Initial Retrieval via Hybrid Retriever

In the vast landscape of open-source repositories, developmental

commits overwhelmingly outnumber security patches. To illustrate,

the renowned Linux kernel project [41] has amassed 1, 215, 313

commits as of 15th September 2023. Yet, throughout its history,

it has been associated with only 4, 165 CVEs [4]. While existing

ranking-based methods such as PatchScout [39] have made notable

strides, they predominantly lean on handcrafted features to pinpoint

security patches. Given the overwhelming number of commits,

these methods might not �t well to consistently attain the desired

precision. To address this, we incorporate initial retrieval into the

security patch tracing task. Speci�cally, we utilize a hybrid approach

to combine a lexical-based TF-IDF [2] retriever and a semantic-

based CodeReviewer (pretrained) retriever to take both lexical and

semantic information into account. This is because, prior works [19,

49] show that sparse and dense retrievers can complement each

other for more robust text retrieval. Due to the existence of large

commits and the length constraint of CodeReviewer (maximum

of 512 tokens), we preprocess di� �les by extracting only the lines

that involve code changes and then limit the scope to the �rst 1,000

lines. The statistics show that it can get good coverage (98.6%) of

the patch samples on our dataset.

3.2.1 Lexical-based Retriever. TF-IDF [2] stands out for its e�-

ciency and its well-recognized capability to capture lexical sim-

ilarities. At this stage, our objective is not to de�nitively locate

the security patches but to considerably narrow down the pool of

potential commits. By harnessing the capabilities of TF-IDF, we

can e�ectively �lter out commits less likely to be security patches,

paving the way for a more in-depth analysis in the following stages

of our approach.

Formally, in our task, the term C represents individual words or

tokens present in CVE descriptions or commits, which includes

both commit messages and code di�s. Given a CVE description 38
∈ D, both 38 and the corresponding commits 2 9 ∈ C8 are treated as

separate documents. The entire set of commits associated with a

particular CVE, denoted as C8 , forms our corpus for 38 .

The TF-IDF score for a term C in a document 3 (either a CVE

description 38 or a commit 2 9) within the corpus C8 is given by:

TF-IDF(C, 3, C8) = TF(C, 3) × IDF(C, C8) (1)

Here TF(C, 3) is the term frequency of C in 3 , calculated as the

number of times C appears in 3 divided by the total number of

terms in 3 . IDF(C, C8) is the inverse document frequency of C in C8 ,

calculated as the logarithm of the total number of documents in C8
divided by the number of documents containing C .

To measure the similarity between the TF-IDF vectors of a given

CVE description 38 and a code commit 2 9 (2 9 ∈ C8), we employ

593

PatchFinder: A Two-Phase Approach to Security Patch Tracing for Disclosed Vulnerabilities in Open-Source So�ware ISSTA ’24, September 16–20, 2024, Vienna, Austria

Server exposed to file path traversal

Commit 끫뢠끫뢮
Contextual Embedding Pairwise Cosine

 Similarity

Maximum Similarity

… …

… …

set up strict file path validation

diff --git a/eg.py b/eg.py

index fa…8 100644

--- a/eg.py +++ b/eg.py

@@ -17 +36 @@ foo

- f_path = user_input

+ f_path = os.path.normpath(user_input) CVE Description

C
o
m

m
it

Semantic Similarity끫룴끫룴끫룴(끫뤊끫룴. 끫뤈끫뤖)

CVE Description 끫뢢끫뢬

Figure 2: The work�ow of our Semantic-based Retriever.

cosine similarity between two vectors ®38 and ®2 9 , which is de�ned

as:

2>B8=4 (®38 , ®2 9) =
®38 · ®2 9

∥ ®38 ∥ × ∥ ®2 9 ∥
(2)

where ®38 · ®2 9 is the dot product of the vectors, and ∥ ®38 ∥ and ∥ ®2 9 ∥

are the magnitudes of the vectors ®38 and ®2 9 , respectively. The co-

sine similarity score ranges between 0 and 1, indicating the lexical

similarity between the description and the commit. In this way,

commits that are more similar to the given CVE description will

have a higher cosine similarity score.

3.2.2 Semantic-based Retriever. Inspired by [51], we adopt a pre-

trained CodeReviewermodel to retrieve relevant patches bymeasur-

ing their semantic similarity. Speci�cally, to encode the CVE descrip-

tion and commits, we use a CodeReviewer encoder tomap each CVE

description and commit pair (38 , 2 9) (where 38 ∈ D, 2 9 ∈ C8) to a

�xed-size dense vector, leveraging its pro�ciency in analyzing code

changes and understanding the semantics of defects such as vulnera-

bilities. Speci�cally, given a CVE description38 =< 3
1
8 , 3

2
8 , ..., 3

|38 |
8 >

and a candidate commit 2 9 =< 2
1
9 , 2

2
9 , ..., 2

|2 9 |
9 >, we use contextual

embeddings to represent the tokens and compute matching using

cosine similarity (as shown in Figure 2).

Token Representation.We use contextual embeddings to repre-

sent the tokens in the CVE description 38 and candidate commit

2 9 , since its better semantic capturing when compared with word

embeddings [51]. Contextual embeddings can generate di�erent

vector representations for the same word in di�erent sentences

depending on the surrounding words, which form the context of

the target word. Speci�cally, We use a shared pretrained CodeRe-

viewer (abbr. CRP) to separately encode the CVE description 38
in D and each commits candidate 2 9 in C8 . We prepend a special

token of [CLS] into its tokenized sequence and employ the �nal

layer hidden state of the [CLS] token as the patch representation.

We format each of the commits as {[�!(], 38 5 5 9 , ["(�],<B6 9 }.

Then the CVE description 38 and each commit 2 9 ∈ �8 are fed

separately into the CRP encoder to obtain the sequences of token

vectors, which can be formulated as: ((38) = �'%encoder (38), and

((2 9) = �'%encoder (<B6 9 ;38 5 59) respectively.

Similarity Calculation. The token representation facilitates a soft

measure of similarity instead of exact-string or heuristic match-

ing in lexical-based methods. For each token vector in the CVE

description, we denote them as 3<8 ∈ ((38) and commit 3=9 ∈ ((2 9),

respectively. Then we calculate their cosine similarity to consider

token relations between them. To reduce the calculation cost to the

inner product 3<8
) 2=9 , we use pre-normalized vectors. While this

measure considers tokens in isolation, the contextual embeddings

contain information from the rest of the sentence.

Based on this, we calculate the complete score that matches each

token in CVE description 38 to a token in candidate commit 2 9 to

compute Recall and each token in 2 9 to a token in 38 to compute

Precision. We use greedy matching to maximize the matching simi-

larity score, where each token is matched to the most similar token

in the other sentence. Finally, we combine precision and recall to

compute an F1 measure. For a CVE description 38 and its candi-

date commit 2 9 , the Recall (R), Precision (P), and F1 score (F1) are

calculated as:

' =

1

38

|38 |∑

3<
8
∈38

max
2=
9
∈2 9

2<8
)3=9 (3)

% =

1

2 9

|2 9 |∑

2=
9
∈2 9

max3<8
) 2=9 (4)

B8<(38 , 2 9) = �1 = 2
' · %

' + %
(5)

The F1 similarity score ranges between 0 and 1, indicating the se-

mantic similarity B8<(38 , 2 9) between the given CVE description 38
and the commit 2 9 . In this way, commits that are more semantically

similar to the CVE description will have a higher F1 score.

3.2.3 Hybrid Retriever. To take both lexical and semantic infor-

mation into account, we utilize a hybrid approach following [19]

to combine TF-IDF and CodeReviewer. The fusion of lexical and

semantic similarities leverages their complementary analysis per-

spectives—lexical for word-based similarity and semantic for con-

ceptual alignment (e.g., synonyms). Additionally, they share the

same value space ([0,1]), facilitating straightforward additive fusion.

The parameter _ adjusts the emphasis on these features, allowing

for a uni�ed similarity metric. The similarity score is computed as

5q (38 , 2 9) = B8<(38 , 2 9) + _ · 2>B8=4 (®38 , ®2 9), where _ is a weight to

balance the two retrievers. After conducting a parameter tuning

process including a grid search over various values (from 0.1 to

10 with a step of 0.05), we found that _ = 1 in our experiment

delivers optimal e�ectiveness among them. Nevertheless, we retain

the parameter _ to facilitate adaptation to di�erent datasets.

594

ISSTA ’24, September 16–20, 2024, Vienna, Austria Kaixuan Li, Jian Zhang, Sen Chen, Han Liu, Yang Liu, and Yixiang Chen

Based on this combined similarity score, we rank the commits for

a given CVE description. We retain the top-: commits that have the

highest similarity scores as candidates for the security patch. This

yields a re�ned set of commits, which signi�cantly narrows down

the search space for locating the true patch. Indeed, a trade-o� exists

between e�ciency and accuracy in this phrase. While there could

be more accurate alternatives for retrieving these candidates such

as BM25 [36] and supervised dense retrieval approaches [19, 20],

the re-weighting and re-training process adds extra complexity.

Fundamentally, we can further analyze the candidates and identify

the patch through re-ranking. We provide the details of the re-

ranking phrase in the next section.

3.3 Re-ranking via Fine-tuning CodeReviewer

As mentioned above, we have re�ned the list of commits to the

top-: most relevant candidates for each CVE. For this phase, we opt

for CodeReviewer [23], a state-of-the-art large language model pre-

trained on the foundation of CodeT5 [45]. There are two considera-

tions for this choice. 1) Encoder Specialization: CodeReviewer’s

encoder is designed to deeply understand commit behaviors and is-

sues, a feature not necessarily present or optimized in other models.

This encoder specialization ensures that the model comprehends

the intricate relationships between code changes and potential se-

curity implications, vital for matching commits to CVE descriptions.

2) Downstream Task Optimization: Although our focus is not

on generating code reviews, the fact that CodeReviewer’s decoder

is optimized for such downstream tasks indicates its ability to link

code changes to descriptive text, a parallel to our objective of linking

commits to CVE descriptions. Given these advantages, we �ne-tune

CodeReviewer on the top-: candidate commits, aiming to re-rank

them based on their relevance to the respective CVE descriptions.

We only use the pre-trained encoder of CodeReviewer (abbr. CR)

since our task can be basically viewed as a binary classi�cation prob-

lem in the re-ranking phrase. Speci�cally, given a CVE description

38 , and the top-: commits represented as �: = {(<B6 9 , 38 5 59)}
:
9=1,

we format each commit as {[�!(], 38 5 59 , ["(�],<B6 9 }. Then the

CVE description 3 and each commit 2 9 ∈ �: are encoded separately

using the CR encoder to yield two sequences of vectors:

� (3) = �'encoder (3) (6)

� (2 9) = �'encoder (<B6 9 ;38 5 59) (7)

We obtain the vector representations of 38 and 2 9 by extracting

the hidden state in the last layer of the special token [CLS] at the

beginning of � (38) and � (2 9) respectively. The encoded vectors of

the CVE description and the commit are concatenated:

+9 = [� (38);� (2 9)] (8)

We apply a linear classi�er to the concatenated vector +9 for esti-

mating the correlations:

~ 9 = f (, ·+9 + 1) (9)

where, is the weight matrix, 1 is the bias term, and f denotes the

sigmoid function ensuring the output lies between 0 and 1.

We utilize labeled data containing known CVE-commit pairs

during the �ne-tuning phase. The training goal is to minimize the

binary cross-entropy loss:

L = −
1

:

:∑

9=1

[~true, 9 log(~ 9) + (1 − ~true, 9) log(1 − ~ 9)] (10)

where ~true, 9 is the ground truth label of the 9Cℎ sample, indicating

whether commit 2 9 is related to the CVE description 38 .

After �ne-tuning, for any newCVE and set of commits, themodel

can compute the relevance scores. Commits can then be re-ranked

based on the scores concerning the given CVE. This method ensures

that the CR encoder understands both generic textual semantics and

the speci�c indicators that tie a commit to the given CVE, making

the approach specially tailored for our challenge.

4 Evaluation

4.1 Research Questions

We aim to answer the following research questions:

• RQ1: E�ectiveness Analysis. How e�ective is PatchFinder

when comparedwith existing baselines in tracing security patches?

• RQ2: Ablation Analysis.What impact does each component

of PatchFinder have on the overall performance?

• RQ3: Distribution Analysis. Does PatchFinder exhibit notably

high or low accuracy for certain vulnerability types or severity?

• RQ4: Practicality Analysis. How e�ective is PatchFinder in

real-world applications, particularly when detecting security

patches for CVEs without associated trace links?

4.2 Dataset

For the training and evaluation of our model, we compiled a dataset

that encompasses both OSS vulnerabilities and their correspond-

ing security patches. The dataset was assembled in two primary

steps: 1) Initial Data Collection: We began by collecting data

fromWang et al. [43] and Tan et al. [39]. We thereby obtained 1,669

unique CVEs from 10 OSS projects. 2) Dataset Supplement: To

augment our dataset, we crawled vulnerabilities and their asso-

ciated patches from multiple sources, including the o�cial CVE,

NVD, and Snyk [38] vulnerability databases. This initial collection

yielded 3,585 unique CVEs from 532 OSS projects. After eliminat-

ing duplicate entries, our �nalized dataset comprises 4,789 unique

CVEs and 4,870 distinct security patch commits, which involve

532 unique OSS projects, covering various programming languages

including C/C++, Java, JavaScript, and PHP. This makes our dataset

the most extensive collection of CVEs and security patches avail-

able to date. Each dataset entry includes the CVE-ID along with

its textual description and the corresponding security patch links.

We also extracted related commits including commit messages and

code di�s, primarily from GitHub [11] and GitLab [12].

To create a robust training set, we followed the practices in prior

works [39, 43] to sample 5,000 non-patch commits as negative sam-

ples for each CVE. However, in scenarios where a repository con-

tained fewer than 5,000 commits in total, we included all available

non-patch commits as negative samples. Finally, we got 21,781,044

commits in total. To the best of our knowledge, this is the largest

dataset speci�c for the security patch tracing problem.

595

PatchFinder: A Two-Phase Approach to Security Patch Tracing for Disclosed Vulnerabilities in Open-Source So�ware ISSTA ’24, September 16–20, 2024, Vienna, Austria

4.3 Experiment Setup

We randomly split the 4,789 unique CVEs along with their corre-

sponding commits in the proportion of 8 : 1 : 1 to keep the same

split settings as baselines [39, 43]. The maximum token length for

CodeReviewer is set at 512, which represents its upper limit for pro-

cessing capacity. Given the preprocessing of code di�s as detailed

in Section 3, this token length is actually su�cient for our purposes.

To preprocess data, we use the NLTK toolkit and the BPE tokenizer

of CodeReviewer to tokenize CVE descriptions and commits. For

the initial retrieval phase, we retrieve the top 100 commits from the

initial 5,000 commits for each CVE. This threshold : enables us to

obtain a good balance between the coverage of true patches and

noisy commits. During �ne-tuning, the batch size is set to 32 and

the maximum epoch is 20. We adopt the widely-used Adam [22] as

the optimizer with a learning rate of 5e-5 for training our model.

All the above hyper-parameters are determined based on the vali-

dation set by selecting the best ones among some alternatives. All

experiments ran on a server with 48 CPU cores (Intel® Xeon®

Silver 4214 CPU @ 2.20GHz), 252 GB RAM, and 4 NVIDIA RTX

3090 GPUs (24 GB memory each).

4.4 Baselines

We benchmark our approach against state-of-the-art works in se-

curity patch tracing as presented in [39, 43]. Due to the absence of

available replication packages of PatchScout [39], we implemented

it independently by adhering to the default settings unless speci-

�ed otherwise. Additionally, we consider two renowned baselines

frequently used in the information retrieval domain for our eval-

uation: BM25 [36], a classic method for sparse retrieval [32], and

ColBERT [20], known for dense retrieval [19].

4.5 Evaluation Metrics

To ensure a fair comparison between PatchFinder and the base-

lines, we utilize three metrics: Recall@K, Mean Reciprocal Rank

(MRR) [14], and Manual E�orts@K. Recall@K and Manual Ef-

forts@K have been previously employed in previous studies [39, 43].

We also incorporate MRR into our evaluation, given its established

signi�cance in ranking systems.

4.5.1 Recall@K. Recall@ refers to the ratio of the number of

security patches traced in the top-K results to the number of all

security patches for a given . Hence, a higher Recall@K score

means better performance.

4.5.2 Mean Reciprocal Rank (MRR). MRR is a widely used eval-

uation metric for ranking systems, particularly in the domain of

information retrieval. It emphasizes the importance of the position

of the �rst relevant result in a list of retrieved documents, making

it especially relevant for security patch tracing where we typically

seek a single commit. MRR is de�ned mathematically as follows:

"'' =

1

|� |

|� |∑

8=1

1

rank8
(11)

In this equation, |� | represents the total number of CVEs, and

rank8 denotes the position of the �rst security patch for the 8-th

CVE. The MRR values range between 0 and 1, with higher values

indicating better retrieval performance. By considering the inverse

Table 1: The e�ectiveness of PatchFinder and baselines to

trace patch commits.

Recall@K PatchScout VCMatch BM25 ColBERT PatchFinder

K=1 46.25% 55.93% 11.88% 26.29% 79.23%

K=2 48.51% 57.72% 16.88% 31.49% 79.30%

K=3 48.72% 58.07% 19.58% 34.41% 79.57%

K=4 48.72% 58.42% 20.83% 37.23% 79.64%

K=5 48.92% 59.58% 22.08% 38.38% 79.91%

K=6 48.92% 61.88% 22.50% 40.93% 79.97%

K=7 48.92% 63.42% 23.54% 41.96% 80.04%

K=8 48.92% 63.42% 25.00% 43.22% 80.31%

K=9 48.92% 63.42% 25.83% 44.45% 80.35%

K=10 48.92% 63.42% 26.04% 44.95% 80.63%

MRR 0.3824 0.6195 0.1736 0.3240 0.7951

of the rank of the �rst relevant result, MRR encourages systems to

prioritize the most relevant information at the top of the list, thus

improving user satisfaction and system e�ciency. The higher the

MRR value, the better the security patch tracing performance.

4.5.3 Manual E�orts@K. In the pursuit of tracing security patches

within OSS, the Manual E�orts@K metric emerges as a classic

metric. It represents the manual inspection e�ort required to locate

the correct patch within the top-K results. If the desired security

patch is found within these results, the e�ort corresponds to its

rank. However, if the patch is not within the top-K, the e�ort is ,

indicating a comprehensive search without success. Drawing from

related work [39], the metric is mathematically expressed as:

Manual E�orts@K =

∑=
8=1min(rank8 ,)

=
(12)

A lower Manual E�ort@K score is indicative of a more e�cient

and e�ective method for tracing security patch commits. This aids

NVD security experts in mitigating the extensive manual work

associated with tracing security patches, reducing inspection time,

and enhancing patch detection accuracy.

5 Results and Discussion

We investigate the following research questions to provide a thor-

ough analysis of the experimental results.

5.1 RQ1: E�ectiveness Analysis

Table 1 and Table 2 show the e�ectiveness of di�erent approaches

in terms of Recall@K, MRR, and Manual E�orts@K, with the best

one of each metric marked in bold. Table 1 reveals that PatchFinder

signi�cantly outperforms all the SOTA approaches across di�erent

values of , for the Recall@Kmetric. The superiority of PatchFinder

is most prominent at = 1 where it achieves a Recall of 79.23%,

markedly higher than PatchScout’s 46.25%, VCMatch’s 55.93%, BM25

’s 11.88%, and ColBERT’s 26.29%. This trend continues as in-

creases, showcasing the consistent e�ectiveness of PatchFinder in

locating security patch commits within the top- results. Notably,

the Recall@K for PatchFinder remains above 79% for all values of ,

highlighting its robustness in tracing relevant security patches. The

MRR further con�rms the e�ectiveness of PatchFinder with a score

of 0.7951, signi�cantly outpacing the 0.6195 and 0.3824 attained

by VCMatch and PatchScout, respectively. This superior perfor-

mance can be attributed to our two-phase approach that combines

596

ISSTA ’24, September 16–20, 2024, Vienna, Austria Kaixuan Li, Jian Zhang, Sen Chen, Han Liu, Yang Liu, and Yixiang Chen

Table 2: Manual E�orts@K (ME@K) of PatchFinder and baselines to trace security patch commits.

ME@K PatchScout VCMatch BM25 ColBERT PatchFinder ME@K PatchScout VCMatch BM25 ColBERT PatchFinder

K=1 1.00 1.00 1.00 1.00 1.00 K=8 4.61 4.47 6.29 5.38 2.38

K=2 1.54 1.51 1.86 1.71 1.20 K=9 5.12 4.51 6.95 5.94 2.58

K=3 2.05 1.54 2.68 2.38 1.40 K=10 5.63 5.38 7.64 6.49 2.77

K=4 2.57 2.28 3.46 3.01 1.60 K=20 10.59 10.14 13.67 11.70 4.71

K=5 3.08 2.35 4.23 3.63 1.80 K=30 14.75 13.91 19.43 16.52 6.65

K=6 3.59 3.43 4.94 4.23 1.99 K=50 29.46 26.01 29.69 25.26 10.52

K=7 4.10 3.82 5.60 4.81 2.19 K=100 41.86 34.47 50.91 44.92 20.21

the lexical-level understanding from TF-IDF with the semantic un-

derstanding from the �ne-tuned CR model. As shown in Table 2,

PatchFinder requires much less manual e�ort compared to other

methods. At = 1, all methods tie with a score of 1.00, indicating

minimal manual e�ort required regardless of the existence of true

patches. However, as increases, PatchFinder consistently requires

less manual e�ort compared to the other baselines. For instance, at

 = 10, PatchFinder registers a score of 2.77, which is considerably

less than the manual e�ort demanded by the best baseline. This

trend underscores the e�ciency of PatchFinder, particularly as the

value of rises, demonstrating a lower manual e�ort requirement

for practitioners aiming to trace security patches. Meanwhile, the

observed lower e�ectiveness of PatchScout and VCMatch on our

dataset compared to their published results [39, 43] can be attributed

to two factors: ① Data diversity: As discussed before, PatchScout

and VCMatch rely on handcrafted word-based similarities derived

from their original dataset, which diminishes with increased data

diversity. Such features struggle to capture relevant patch charac-

teristics in a varied dataset. Our expanded dataset, featuring 4,789

CVEs from 532 OSS projects, presents an apparent contrast to their

original dataset’s 658 (1,669 for VCMatch) CVEs from only 5 (10

for VCMatch) OSS projects. This signi�cant increase in both the

number of CVEs and the diversity of originating projects introduces

greater complexity, challenging their ability to accurately identify

patches. ② Language Speci�city: Their design primarily focuses on

C/C++ OSS projects, which may not generalize well to other lan-

guages like Java and PHP, etc. These factors collectively lead to the

variance in e�ectiveness between the original and our new datasets

when applying PatchScout and VCMatch. Moreover, this compar-

ison underscores an additional advantage of PatchFinder: unlike

PatchScout and VCMatch, PatchFinder does not rely on prede�ned,

language-speci�c features. This design enhances PatchFinder’s scal-

ability and applicability across various programming languages.

The observed results underscore the e�cacy of PatchFinder in

tracing security patch commits compared to existing baseline ap-

proaches. While previous ranking-based methods including Patch-

Scout and VCMatch have made signi�cant contributions when com-

pared with match-based approaches [39, 43], their reliance on hand-

crafted features (predominantly lexical only). However, in practice,

CVE descriptions and commits often use di�erent terminologies

to describe the same vulnerability including synonyms or vary-

ing phrasings. This discrepancy becomes particularly challenging

when CVE descriptions or commits do not adhere to high-quality

documentation standards, a situation frequently encountered with

CVEs lacking associated patches. Consequently, their performance

Table 3: E�ciency of PatchScout, VCMatch, and PatchFinder.

Tool PatchScout VCMatch PatchFinder

Time Cost per CVE (s) 41.57 43.35 46.83

proves to be inadequate on the large and diverse projects that in-

volve arbitrary descriptions and commits.

In contrast, PatchFinder leverages TF-IDF and CR to understand

both the lexical and semantic aspects of the CVE description and

commits, thereby achieving higher accuracy. Moreover, the �ne-

tuning process of CR allows our model to adapt to the speci�c

semantics and patterns commonly found in security patches. This

adaptability is a marked edge over methods such as PatchScout,

which cannot adjust to the data on which they are deployed.

E�ciency Analysis. While PatchFinder employs a two-phase ap-

proach and involves �ne-tuning CR, it maintains computational

e�ciency. To demonstrate this, we compared PatchFinder with

PatchScout [39] and VCMatch [43] across our test set of 480 CVEs,

conducting three trials to ensure accuracy. The results displayed

in Table 3 re�ect that PatchFinder’s e�ciency is closely competi-

tive with the baselines. Despite a slightly higher overall time cost

(3.48-5.26s), PatchFinder’s performance is competitive, especially

when considering its enhanced accuracy and scalability. Notably,

Phase-2 required only 1.1 seconds on average per CVE. The initial

retrieval phase consumes most of the time due to the extraction of

lexical and semantic features. Speci�cally, the time cost for Phase-1

is 45.75 seconds per CVE. To speed it up, PatchFinder’s e�ciency

can be easily enhanced by applying a vector database for retrieval,

such as Faiss [26] or Redis [35] in this phase.

Answer to RQ1: Compared with the four baselines, PatchFinder

demonstrated superior e�ectiveness, achieving improvements of

17.42%-54.59% in Recall@10, 0.1756-0.6215 in MRR, and e�ec-

tively reducing Manual E�orts@100 by 14.26-30.7. These results

underscore the e�ectiveness of PatchFinder in patch tracing.

5.2 RQ2: Ablation Analysis

In our proposed approach, we integrate two primary components:

an initial retrieval using a hybrid retriever consisting of TF-IDF

and pre-trained CodeReviewer (Phase-1), followed by a subsequent

re-ranking using a �ne-tuned CodeReviewer model (Phase-2). The

input to our system encompasses the CVE description, commit

messages, and code di�s. To dissect their e�ectiveness, we con-

ducted a detailed ablation study by examining the performance

of PatchFinder under various con�gurations: ① Using only the

597

PatchFinder: A Two-Phase Approach to Security Patch Tracing for Disclosed Vulnerabilities in Open-Source So�ware ISSTA ’24, September 16–20, 2024, Vienna, Austria

Table 4: Contribution of individual components in

PatchFinder in terms of Recall@K.

Recall@K TD-IDF CR?A4CA08= Di� Msg Phase-1 Phase-2 PatchFinder

K=1 35.21% 28.75% 35.26% 63.85% 41.04% 0.21% 79.23%

K=2 40.21% 32.71% 42.60% 63.96% 47.71% 0.42% 79.30%

K=3 45.21% 34.58% 45.36% 64.06% 51.88% 0.42% 79.57%

K=4 47.71% 36.67% 46.67% 64.17% 54.38% 1.25% 79.64%

K=5 51.04% 38.33% 48.80% 64.27% 56.04% 1.46% 79.91%

K=6 52.71% 39.79% 49.27% 64.38% 57.50% 1.46% 79.97%

K=7 53.75% 40.21% 50.57% 64.48% 58.54% 1.46% 80.04%

K=8 54.79% 41.88% 52.08% 64.58% 59.17% 1.46% 80.31%

K=9 56.25% 43.13% 52.71% 64.58% 60.83% 1.46% 80.35%

K=10 57.29% 43.96% 55.70% 64.58% 61.46% 1.88% 80.63%

MRR 0.4243 0.3394 0.4146 0.6403 0.4827 -5.87E-06 0.7951

lexical-based retriever, i.e., our TF-IDF retriever for tracing secu-

rity patches (termed “TF-IDF”), ② Using only the semantic-based

retriever, i.e., pre-trained CodeReviewer model for tracing security

patches (termed “CR?A4CA08=”), ③ Utilizing only the CVE descrip-

tion and commit messages (termed “Msg”) for security patch tracing,

and ④ Utilizing only CVE description and code di�s (termed “Di�”)

for tracing, ⑤ Employing the initial retrieval phase only (termed

“Phase-1”), and ⑥ Directly �ne-tuning CodeReviewer without the

�rst phase (termed “Phase-2”).

As shown in Table 4 and Table 5, the substantial improvement in

terms of all metrics demonstrates the superiority of our two-phase

approach over either a lexical-based or semantic-based retriever.

PatchFinder attains a Recall@1 of 79.23%, which is more than dou-

ble the performance when solely relying on TF-IDF or pretrained

CodeReviewer. Notably, CR?A4CA08= , which has not undergone �ne-

tuning, still manages an acceptable score, especially when compared

with ColBERT as shown in Table 1. This underscores the impor-

tance of domain-speci�c LLMs (CodeReviewer in PatchFinder) in

understanding the underlying semantics in this task.

Similarly, both commit messages and code di�s play pivotal roles

in capturing the nuanced semantics of commits, enabling accurate

security patch tracing. The comparison suggests that commit mes-

sages have a good positive impact. This is likely because both CVE

descriptions and commit messages are written in natural language,

whereas code di�s are in various programming languages. This

makes their lexical structures much less aligned, and thus relying

solely on di�s in the initial phase can result in decreased recall.

Nonetheless, commit messages and code di�s serve complementary

roles in patch tracing within PatchFinder, rather than being mutu-

ally exclusive. Table 4 and 5 indicate that incorporating code di�s

alongside commit messages signi�cantly boosts the PatchFinder’s

e�ectiveness, demonstrating a notable improvement in Recall@1

from 63.85% to over 79.23% at Recall@1, an enhancement of 15.38%.

It contributes to tracing an additional 16.05% of security patches

that are untraceable by commit messages alone, and enhances the

MRR by 0.1548, thereby reducing the manual e�ort by 5.95 commits

for = 100. This underlines the importance of code di�s in enrich-

ing our semantic analysis for more accurate patch identi�cation.

Interestingly, based on our results in Table 1 and 2, TF-IDF tends

to outperform BM25 for retrieving the commits that cover true

patches. As explored in [18], BM25 employs a term saturationmodel

and document length normalization for long texts. In our context,

these aspects might inadvertently prioritize exact matches over

Table 5: Contribution of individual components in

PatchFinder in terms of Manual E�orts@K (ME@K).

ME@K TF-IDF CR?A4CA08= Di� Msg Phase-1 Phase-2 PatchFinder

K=1 1.00 1.00 1.00 1.00 1.00 1.00 1.00

K=2 1.54 1.71 1.51 1.25 1.59 2.00 1.20

K=3 2.05 2.38 1.54 1.51 2.11 2.99 1.40

K=4 2.57 3.04 2.28 1.76 2.59 3.99 1.60

K=5 3.08 3.67 2.35 2.02 3.05 4.98 1.80

K=6 3.59 4.29 3.43 2.27 3.49 5.96 1.99

K=7 4.10 4.89 3.82 2.53 3.91 6.95 2.19

K=8 4.74 5.49 4.61 2.78 4.33 7.93 2.38

K=9 5.19 6.07 5.12 3.03 4.73 8.92 2.58

K=10 5.63 6.64 5.63 3.29 5.13 9.90 2.77

K=20 9.52 11.94 10.59 5.83 8.63 19.67 4.71

K=30 12.76 16.57 14.75 8.37 11.66 29.20 6.65

K=50 18.58 24.73 29.46 13.45 16.96 47.81 10.52

K=100 31.19 43.02 41.86 26.16 27.90 93.07 20.21

partial ones, making it less e�ective for the concise nature of CVE

descriptions and commits. Hence, weighing both e�ectiveness and

e�ciency, TF-IDF emerges as our preferred choice for this task.

Moreover, the quantitative results presented in Tables 4 and 5

clarify our motivation for adopting a two-phase design and demon-

strate its essential role in addressing the challenges previously

mentioned. Speci�cally, the Phase-1 con�guration e�ectively nar-

rows down the dataset, ensuring the LLM in the re-ranking phase

to focus its analysis on a more re�ned set of candidates. This is

evident from its Recall@K, which reaches up to 61.46% at K=10, and

an MRR of 0.4827, underscoring its critical contribution to ensuring

broad coverage. Conversely, when the analysis is conducted with

only Phase-2, its performance signi�cantly drops with Recall@K

peaking at merely 1.88% at K=10. This obvious under-performance

highlights the LLM’s challenges in dealing with vast, imbalanced

datasets (with a patch to non-patch ratio of 1:5000), thereby illus-

trating the necessity of the initial retrieval phase in re�ning the

dataset for subsequent LLM re-ranking. This re�nement shifts the

ratio from 1:5000 to a more manageable 1:100, ensuring focused

and e�ective analysis.

Answer to RQ2: Both main components and input of PatchFinder

e�ectively contribute to the overall performance. Commit mes-

sages are important, while code di�s further complement and

enhance semantic understanding. Meanwhile, the two-phase de-

sign of PatchFinder proves to be crucial for the overall e�ectiveness

in locating patches, where only using one of the two phases can

result in a signi�cant decline in performance.

5.3 RQ3: Distribution Analysis

This RQ focuses on a detailed investigation of the outcomes from

PatchFinder. The primary aim is to explore if there exists a corre-

lation between the types of vulnerabilities and the true patches

identi�ed by PatchFinder. Speci�cally, we are interested in examin-

ing whether PatchFinder’s retrieval accuracy varies across di�erent

vulnerability categories and their respective severity levels.

To conduct this analysis, we categorized the vulnerabilities in

our test dataset based on their Common Weakness Enumeration

(CWE) identi�ers [5] and Common Vulnerability Scoring System

(CVSS) V2 scores [10]. Our analysis reveals that PatchFinder is par-

ticularly e�ective in tracing security patches for speci�c types of

598

ISSTA ’24, September 16–20, 2024, Vienna, Austria Kaixuan Li, Jian Zhang, Sen Chen, Han Liu, Yang Liu, and Yixiang Chen

vulnerabilities. It shows exceptional performance for vulnerabili-

ties categorized under CWE-125: Out-of-bounds Read and CWE-119:

Improper Restriction of Operations within the Bounds of a Memory

Bu�er, achieving a tracing success rate of 100% (46/46) and 78.85%

(41/52), respectively. While PatchFinder generally performs well

across various CWE types, it does exhibit lower e�ectiveness for

CWE-122: Heap-based Bu�er Over�ow and CWE-834: Excessive Iter-

ation, with tracing ratios of 20% (1/5) and 33.3% (1/3), respectively.

This indicates that the vulnerability distribution does have a signif-

icant impact on the e�ectiveness. The lower e�ectiveness observed

for certain CWE types, such as CWE-122 and CWE-834, might be

attributed to the inherent complexity of these vulnerabilities. For

instance, heap-based bu�er over�ows (CWE-122) can manifest in

various ways in the code, making them harder to trace even though

using CR. Addressing this challenge might require more specialized

features tailored to speci�c vulnerability types. Additionally, gath-

ering more training data related to these challenging CWEs could

enhance the model’s understanding and improve performance.

We further investigated the relationship between the severity of

vulnerabilities, as indicated by their CVSS V2 scores, and the level of

di�culty in tracing their corresponding security patches. Our anal-

ysis reveals a notable correlation: vulnerabilities with higher CVSS

scores are generally easier to trace. Speci�cally, PatchFinder suc-

cessfully traced 84.52% (71/84) of high-severity CVEs. Surprisingly,

the tracing success rate for medium-severity CVEs was slightly

higher, at 86.09% (192/223). However, the tracing success rate for

low-severity CVEs was the lowest, at 78.03% (135/173). One plau-

sible explanation for this trend could be that high and medium-

severity vulnerabilities often come with detailed descriptions, im-

mediate developer attention, and increased community scrutiny, all

of which facilitate more accurate tracing. In contrast, low-severity

CVEs often receive less detailed documentation and lower levels of

developer and community focus. Besides, the patches written by

security analysts can di�er according to the severity of vulnerabil-

ities, which need dedicated strategies to capture their semantics.

These �ndings highlight that the vulnerability severity involving

the quality and characteristics of CVE artifacts is a non-negligible

factor to consider for further re�nements.

Answer to RQ3: The vulnerability distribution does have a sig-

ni�cant impact on the e�ectiveness. The performance is also tied

to the severity of vulnerabilities, showing better outcomes for high

and medium-severity vulnerabilities. Implementing specialized

strategies and utilizing data augmentation could improve out-

comes for more di�cult types and vulnerabilities of low severity.

5.4 RQ4: Practicality Analysis

In evaluating the practical utility of PatchFinder, we initially cu-

rated a dataset of 212, 074 CVE entries from NVD as of April 2023.

However, we encountered a signi�cant challenge in accurately

identifying CVEs without patches since the “patch” tags in the

NVD are often imprecise [39]: some entries with patches lack the

corresponding tag, while others may be inaccurately tagged as

having a patch but in fact, they do not.1 Hence, we opted to focus

on a more reliable subset: CVEs a�ecting OSS and known to lack

patches. To this end, we leveraged the OSS project list maintained

1There are 58.28% CVEs (123, 587/212, 074) missing “patch” tags in our initial dataset.

by OSS-Fuzz [13], resulting in 1,199 OSS projects. Further re�ning

our selection, we excluded CVEs with any commit links on NVD, in-

dicating the potential presence of a patch. This meticulous process

yielded a targeted set of 473 CVEs, belonging to 268 OSS projects.

Upon deploying PatchFinder on this curated set, we derived the

top-10 ranked outputs for each CVE. From this pool, we initially

manually reviewed and traced 533 patches. These patches achieved

a ranking of 1.65 in PatchFinder ’s output on average. The entire

review process was e�ciently conducted, taking a total of 13.31

man-hours. We then submitted these patches to CNAs for review.

Notably, 482 of these were subsequently con�rmed by CNAs so

far [46]. This achievement underscores the tangible bene�ts of

PatchFinder and its potential to uncover and address omissions in

current vulnerability databases.

Answer to RQ4: PatchFinder e�ectively traces missing security

patches for a signi�cant set of CVEs in the NVD. From a curated

set of 473 CVEs, PatchFinder’s top-10 ranked outputs led to the

identi�cation of numerous plausible patch commits. Of the 533

manually reviewed patches (averaging a rank of 1.65), 482 were

con�rmed by CNAs, underscoring PatchFinder’s practicality and

its ability to address gaps in current vulnerability databases.

5.5 Case Study

Among the 533 patches we traced in RQ4, a particularly illustra-

tive instance is CVE-2022-31814 from the “pfSense-pfBlockerNG”

project. As shown in Listing 2, this vulnerability allows remote

attackers to execute arbitrary OS commands via speci�c manipula-

tions. The associated patch commit, with its seemingly innocuous

commit message “Update index.php” does not directly indicate its

relevance to the CVE. This ambiguity poses challenges for tools

like PatchScout and VCMatch who failed to recognize it. Their re-

liance on direct textual correlations (such as “# shared �le names”,

“# shared function names”, and “# shared words”, etc.) between

CVE descriptions and commits can be limited, especially when

descriptions and commits employ synonyms or di�erent phrasings.

In contrast, PatchFinder outperforms in such situations since

harnessing the strengths of TF-IDF and CodeReviewer. Unlike other

tools, it e�ectively deals with commits having limited information.

Speci�cally, the patch commit in Listing 2 initially ranked 47th

in our lexical-based retriever due to its brief message. However,

the semantic-based retriever recognized its relevance, where the

addition of escapeshellarg at Lines 23-24 crucially sanitizes shell

metacharacters in the HTTP Host header, directly addressing the

vulnerability. Such intricate changes, often missed by other tools,

are accurately identi�ed by PatchFinder due to its outstanding

semantic analysis of code and text. As a result, our hybrid retriever

improved its rank to 23rd. In the subsequent phase, the top-100

results, including this commit, were analyzed further. Here, the

�ne-tuned CR, adept at understanding code semantics, elevated its

rank to 7th, placing it within the top-10 results.

5.6 Discussion on False Negatives

We further analyzed the missed patch commits of 95 CVEs and

summarized them into three main causes.

• Low-Quality CVE Descriptions (28/95): Some CVE descrip-

tions lack su�cient detail for e�ective patch tracing. Notably,

599

PatchFinder: A Two-Phase Approach to Security Patch Tracing for Disclosed Vulnerabilities in Open-Source So�ware ISSTA ’24, September 16–20, 2024, Vienna, Austria

1 CVE Description:

2 pfSense pfBlockerNG through 2.1.4 _26 allows remote attackers to

execute arbitrary OS commands as root via shell

metacharacters in the HTTP Host header. NOTE: 3.x is

unaffected.

3 **

4 commit 071 bdcf2d918c3e51cde11cf81fbd9b6f0379d7e

5 Author: BBcan177 <bbcan177@gmail.com >

6 Date: Sun Jun 5 13:25:24 2022 -0400

7
8 Update index.php

9
10 diff --git a/net/pfSense -pkg -pfBlockerNG/files/usr/local/www/

pfblockerng/www/index.php

11 b/net/pfSense -pkg -pfBlockerNG/files/usr/local/www/

pfblockerng/www/index.php

12 index 8b8af0fab6b8 ..63 f898b89246 100644

13 --- a/net/pfSense -pkg -pfBlockerNG/files/usr/local/www/pfblockerng

14 ---/www/index.php

15 +++ b/net/pfSense -pkg -pfBlockerNG/files/usr/local/www/pfblockerng

16 +++/ www/index.php

17 @@ -48,7 +48,7 @@ if (! empty($log)) {

18
19 // Query DNSBL Alias for Domain List.

20 $query = str_replace('.', '\.', htmlspecialchars($_SERVER['

HTTP_HOST ']));

21 -exec ("/ usr/bin/grep -l ' \"{ $query} 60 IN A' /var/db/pfblockerng

22 -/dnsblalias /*", $match);

23 +exec ("/ usr/bin/grep -l " . escapeshellarg ("\"{ $query} 60 IN A")

24 + . " /var/db/pfblockerng/dnsblalias /*", $match);

25 $pfb_query = strstr($match [0], 'DNSBL ', FALSE);

26 // Query for a TLD Block

Listing 2: The patch commit for CVE-2022-31814.

CVE-2022-0080 [29] only mentions “mruby is vulnerable to

Heap-based Bu�er Over�ow”, missing any vulnerability infor-

mation except for vulnerability type.

• Giant Commits (41/95): ① Irrelevant File Changes: Commits

such as [40] (a patch commit for CVE-2021-37686) often include

changes unrelated to the patch, such as refactoring, which may

hinder the patch’s intent by introducing the noise.② Token Limit

Exceedance: Some patch commits (e.g., [24] for CVE-2017-18922)

exceed CodeReviewer’s token limit, a�ecting PatchFinder’s abil-

ity to analyze them fully, even though we have pruned the code

di�s before feeding them into CodeReviewer (as discussed in

Section 3.2).

• Confusing Commits (26/95): Certain commits such as [17]

deliberately obscure their patching role (�xing CVE-2017-13146

in this case). Still, non-patch commits within the same repository

conversely claim it “�x” something, making it challenging for

our hybrid retriever to identify candidate patches accurately.

6 Threats to Validity

External Threats. A primary external threat pertains to the re-

producibility of the baselines. While we endeavored to faithfully

implement PatchScout based on its published methodology, the

absence of its source code posed challenges. To ensure a robust

comparison with state-of-the-art methods, we also incorporated

BM25 and ColBERT, which are notable sparse and dense retrieval

models, respectively, as additional baselines.

Internal Threats. Our dataset’s quality and scope could introduce

internal threats. To minimize it, we initially built our dataset upon

datasets from prior studies [39, 43], and followed their practice to

source CVEs and security patches from various public advisories.

Despite our e�orts to curate a broad and diverse dataset, biases

from these sources might persist. In the future, we will consider

manual inspection or automatic techniques that can help assess

and improve the data quality.

7 Related Work

There are numerous works focusing on tracing security patches,

which can be divided into two categories: tracing security patches

for disclosed vulnerabilities [27, 28, 39, 43, 48] and identifying silent

security patches [1, 44, 47, 53–56].

Tracing security patches for disclosed vulnerabilities. Xu et

al. [48] conducted an empirical study to understand the quality and

characteristics of patches for disclosed vulnerabilities in two indus-

trial vulnerability databases, thereby proposing to track patches

from the CVE reference links across multiple knowledge sources

(e.g., Debian). Their work focuses on analyzing reference links

provided by security analysts, instead of directly tracing patches

from OSS repositories. Tan et al. [39] conducted the most related

work with PatchFinder. They designed a ranking-based tool named

PatchScout to locate the patch commits by using RankNet on man-

ually de�ned features from the CVE description and commits. Simi-

larly, VCMatch [43], which directly classi�es one commit as related

or unrelated to the CVE description by fusing the features from

PatchScout and extracted vectors from Bert. Unlike PatchScout and

VCMatch, PatchFinder introduces a novel two-phase framework

designed to overcome the challenges posed by large search spaces,

and enables an end-to-end �ne-tuning, to fully exploit the natural

correlation between CVE descriptions and commits.

Identifying silent security patches. Besides, several works [1,

44, 47, 53–56] have delved into silent security patch identi�cation.

These e�orts discern security patches but do not correlate them

with speci�c vulnerabilities they rectify. In contrast, our focus is

on tracing security patches tailored to a particular vulnerability, as

de�ned by its CVE description.

8 Conclusion

In this paper, we present PatchFinder, an end-to-end and LLM-

enhanced two-phase approach for e�ectively tracing security patches

for disclosed vulnerabilities in OSS. The �rst phase employs a hybrid

retriever for the initial retrieval of relevant commits, signi�cantly

narrowing down the candidate pool. The second phase leverages a

�ne-tuned CodeReviewer model to re-rank these commits, achiev-

ing a high degree of accuracy. Our extensive evaluations demon-

strate that PatchFinder consistently outperforms state-of-the-art

methods in Recall@K,MRR, andmanual e�orts, setting PatchFinder

as a new benchmark in the �eld of security patch tracing.

Acknowledgments

This work is supported by the National Key R&D Program of China

under grant 2021ZD0114501, the RIE2020 Industry Alignment Fund

– Industry Collaboration Projects (IAF-ICP) Funding Initiative, as

well as cash and in-kind contributions from the industry partner(s),

the National Research Foundation, Singapore, and the Cyber Se-

curity Agency under its National Cybersecurity R&D Programme

(NCRP25-P04-TAICeN). Any opinions, �ndings and conclusions, or

recommendations expressed in this material are those of the au-

thor(s) and do not re�ect the views of National Research Foundation,

Singapore and Cyber Security Agency of Singapore.

600

ISSTA ’24, September 16–20, 2024, Vienna, Austria Kaixuan Li, Jian Zhang, Sen Chen, Han Liu, Yang Liu, and Yixiang Chen

References
[1] Rocío Cabrera Lozoya, Arnaud Baumann, Antonino Sabetta, and Michele Bezzi.

2021. Commit2vec: Learning distributed representations of code changes. SN
Computer Science 2, 3 (2021), 150.

[2] Gobinda G Chowdhury. 2010. Introduction to modern information retrieval. Facet
publishing.

[3] ClusterLabs/pacemaker. 2023. Fix: acl: Do not delay evaluation of added nodes
in some situations · ClusterLabs/pacemaker@84ac07c · GitHub. https://github.
com/ClusterLabs/pacemaker/commit/84ac07c. (Accessed on 10/09/2023).

[4] CVE. 2023. Home | CVE. https://www.cve.org/. (Accessed on 10/10/2023).
[5] CWE. 2023. CWE - CWE Glossary. https://cwe.mitre.org/documents/glossary/

index.html. (Accessed on 10/12/2023).
[6] National Vulnerability Database. 2022. Spring4Shell: CVE-2022-22965. https:

//nvd.nist.gov/vuln/detail/cve-2022-22965. (Accessed on 31/01/2023).
[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:

Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[8] Douglas Everson, Long Cheng, and Zhenkai Zhang. 2022. Log4shell Rede�ning
the web attack surface. In Workshop on Measurements, Attacks, and Defenses for
the Web (MADWeb) 2022.

[9] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, et al. 2020. Codebert: A pre-trained
model for programming and natural languages. arXiv:2002.08155 (2020).

[10] Forum of Incident Response and Security Teams, Inc. 2023. CommonVulnerability
Scoring System SIG. https://www.�rst.org/cvss/. (Accessed on 10/12/2023).

[11] GitHub. 2023. GitHub. https://github.com/. (Accessed on 10/13/2023).
[12] GitLab. 2023. GitLab. https://about.gitlab.com/. (Accessed on 10/13/2023).
[13] Google. 2023. google/oss-fuzz. https://github.com/google/oss-fuzz/tree/master/

projects. (Accessed on 10/12/2023).
[14] Xiaodong Gu, Hongyu Zhang, and Sunghun Kim. 2018. Deep code search. In

Proceedings of the 40th International Conference on Software Engineering. 933–944.
[15] Hao Guo, Sen Chen, Zhenchang Xing, Xiaohong Li, Yude Bai, and Jiamou Sun.

2022. Detecting and augmenting missing key aspects in vulnerability descriptions.
ACM Transactions on Software Engineering and Methodology (TOSEM) 31, 3 (2022),
1–27.

[16] Kai Huang, Xiangxin Meng, Jian Zhang, Yang Liu, Wenjie Wang, Shuhao Li, and
Yuqing Zhang. 2023. An empirical study on �ne-tuning large language models
of code for automated program repair. In 2023 38th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 1162–1174.

[17] ImageMagick. 2024. GitHub. https://github.com/ImageMagick/ImageMagick/
commit/79e5dbcdd1fc2f714f9bae548bc55d5073f3ed20. (Accessed on 05/03/2024).

[18] Ammar Ismael Kadhim. 2019. Term weighting for feature extraction on Twitter:
A comparison between BM25 and TF-IDF. In 2019 international conference on
advanced science and engineering (ICOASE). IEEE, 124–128.

[19] Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey
Edunov, Danqi Chen, and Wen-tau Yih. 2020. Dense Passage Retrieval for Open-
Domain Question Answering. In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP). Association for Computational
Linguistics, Online, 6769–6781. https://doi.org/10.18653/v1/2020.emnlp-main.550

[20] Omar Khattab and Matei Zaharia. 2020. ColBERT: E�cient and E�ective Passage
Search via Contextualized Late Interaction over BERT. In Proceedings of the 43rd
International ACM SIGIR Conference on Research and Development in Information
Retrieval (Virtual Event, China) (SIGIR ’20). Association for ComputingMachinery,
New York, NY, USA, 39–48. https://doi.org/10.1145/3397271.3401075

[21] Seulbae Kim, Seunghoon Woo, Heejo Lee, and Hakjoo Oh. 2017. Vuddy: A
scalable approach for vulnerable code clone discovery. In 2017 IEEE Symposium
on Security and Privacy (SP). IEEE, 595–614.

[22] Diederik P. Kingma and Jimmy Ba. 2017. Adam: A Method for Stochastic Opti-
mization. arXiv:1412.6980 [cs.LG]

[23] Zhiyu Li, Shuai Lu, Daya Guo, Nan Duan, Shailesh Jannu, Grant Jenks, Deep
Majumder, Jared Green, Alexey Svyatkovskiy, Shengyu Fu, and Neel Sundare-
san. 2022. Automating Code Review Activities by Large-Scale Pre-Training. In
Proceedings of the 30th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (Singapore, Singapore)
(ESEC/FSE 2022). Association for Computing Machinery, New York, NY, USA,
1035–1047. https://doi.org/10.1145/3540250.3549081

[24] LibVNC. 2024. �x over�ow and refactor websockets decode (Hybi) · LibVNC/lib-
vncserver@aac95a9 · GitHub. https://github.com/LibVNC/libvncserver/commit/
aac95a9dcf4bbba87b76c72706c3221a842ca433. (Accessed on 05/03/2024).

[25] Chengwei Liu, Sen Chen, Lingling Fan, Bihuan Chen, Yang Liu, and Xin Peng.
2022. Demystifying the vulnerability propagation and its evolution via depen-
dency trees in the NPM ecosystem. In Proceedings of the 44th International Con-
ference on Software Engineering. 672–684.

[26] Meta. 2023. A library for e�cient similarity search and clustering of dense vectors.
https://github.com/facebookresearch/faiss. (Accessed on 10/12/2023).

[27] Truong Giang Nguyen, Thanh Le-Cong, Hong Jin Kang, Xuan-Bach D Le, and
David Lo. 2022. Vulcurator: a vulnerability-�xing commit detector. In Proceedings

of the 30th ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 1726–1730.

[28] Giang Nguyen-Truong, Hong Jin Kang, David Lo, Abhishek Sharma, Andrew E
Santosa, Asankhaya Sharma, and Ming Yi Ang. 2022. Hermes: Using commit-
issue linking to detect vulnerability-�xing commits. In 2022 IEEE International
Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE,
51–62.

[29] NVD. 2023. CVE-2022-0080. https://nvd.nist.gov/vuln/detail/CVE-2022-0080.
(Accessed on 05/03/2024).

[30] NVD. 2023. NVD - CVE-2015-1867. https://nvd.nist.gov/vuln/detail/CVE-2015-
1867. (Accessed on 10/09/2023).

[31] Henning Perl, Sergej Dechand, Matthew Smith, Daniel Arp, Fabian Yamaguchi,
Konrad Rieck, Sascha Fahl, and Yasemin Acar. 2015. Vcc�nder: Finding potential
vulnerabilities in open-source projects to assist code audits. In Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications Security.
426–437.

[32] Yifan Qiao, Yingrui Yang, Haixin Lin, and Tao Yang. 2023. Optimizing Guided
Traversal for Fast Learned Sparse Retrieval. In Proceedings of the ACM Web
Conference 2023. 3375–3385.

[33] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. 2018.
Improving language understanding by generative pre-training. (2018).

[34] Colin Ra�el, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. 2020. Exploring the limits of
transfer learning with a uni�ed text-to-text transformer. The Journal of Machine
Learning Research 21, 1 (2020), 5485–5551.

[35] Redis. 2024. Redis. https://redis.io/. (Accessed on 05/03/2024).
[36] Stephen Robertson, Hugo Zaragoza, et al. 2009. The probabilistic relevance

framework: BM25 and beyond. Foundations and Trends® in Information Retrieval
3, 4 (2009), 333–389.

[37] Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiao-
qing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023. Code
llama: Open foundation models for code. arXiv preprint arXiv:2308.12950 (2023).

[38] Snyk. 2023. Snyk Vulnerability Database. https://security.snyk.io/. (Accessed on
10/12/2023).

[39] Xin Tan, Yuan Zhang, Chenyuan Mi, Jiajun Cao, Kun Sun, Yifan Lin, and Min
Yang. 2021. Locating the Security Patches for Disclosed OSS Vulnerabilities
with Vulnerability-Commit Correlation Ranking. In Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications Security (Virtual Event,
Republic of Korea) (CCS ’21). Association for Computing Machinery, New York,
NY, USA, 3282–3299. https://doi.org/10.1145/3460120.3484593

[40] Tensor�ow. 2024. Prevent a division by 0 in average ops. tensor�ow/tensor-
�ow@dfa22b3 · GitHub. https://github.com/tensor�ow/tensor�ow/commit/
dfa22b348b70bb89d6d6ec0�53973bacb4f4695. (Accessed on 05/03/2024).

[41] Torvald. 2023. torvalds/linux: Linux kernel source tree. https://github.com/
torvalds/linux. (Accessed on 10/10/2023).

[42] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yas-
mine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhos-
ale, et al. 2023. Llama 2: Open foundation and �ne-tuned chat models. arXiv
preprint arXiv:2307.09288 (2023).

[43] Shichao Wang, Yun Zhang, Lingfeng Bao, Xin Xia, and Minghui Wu. 2022. VC-
Match: A Ranking-based Approach for Automatic Security Patches Localization
for OSS Vulnerabilities. In 2022 IEEE International Conference on Software Analysis,
Evolution and Reengineering (SANER). IEEE, 589–600.

[44] Xinda Wang, Shu Wang, Pengbin Feng, Kun Sun, Sushil Jajodia, Sanae Ben-
chaaboun, and Frank Geck. 2021. Patchrnn: A deep learning-based system for
security patch identi�cation. InMILCOM 2021-2021 IEEEMilitary Communications
Conference (MILCOM). IEEE, 595–600.

[45] YueWang, Weishi Wang, Sha�q Joty, and Steven CH Hoi. 2021. Codet5: Identi�er-
aware uni�ed pre-trained encoder-decoder models for code understanding and
generation. arXiv preprint arXiv:2109.00859 (2021).

[46] Website. 2023. Website of Our Paper. https://sites.google.com/view/issta2024-
patch�nder/home. (Accessed on 16/12/2023).

[47] Bozhi Wu, Shangqing Liu, Ruitao Feng, Xiaofei Xie, Jingkai Siow, and Shang-Wei
Lin. 2022. Enhancing security patch identi�cation by capturing structures in
commits. IEEE Transactions on Dependable and Secure Computing (2022).

[48] Congying Xu, Bihuan Chen, Chenhao Lu, Kaifeng Huang, Xin Peng, and Yang Liu.
2022. Tracking Patches for Open Source Software Vulnerabilities. In Proceedings
of the 30th ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (Singapore, Singapore) (ESEC/FSE
2022). Association for Computing Machinery, New York, NY, USA, 860–871.
https://doi.org/10.1145/3540250.3549125

[49] Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, and Xudong Liu. 2020.
Retrieval-based neural source code summarization. In Proceedings of the
ACM/IEEE 42nd International Conference on Software Engineering. 1385–1397.

[50] Lyuye Zhang, Chengwei Liu, Sen Chen, Zhengzi Xu, Lingling Fan, Lida Zhao,
Yiran Zhang, and Yang Liu. 2023. Mitigating persistence of open-source vulnera-
bilities in Maven ecosystem. In 2023 38th IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 191–203.

601

https://github.com/ClusterLabs/pacemaker/commit/84ac07c
https://github.com/ClusterLabs/pacemaker/commit/84ac07c
https://www.cve.org/
https://cwe.mitre.org/documents/glossary/index.html
https://cwe.mitre.org/documents/glossary/index.html
https://nvd.nist.gov/vuln/detail/cve-2022-22965
https://nvd.nist.gov/vuln/detail/cve-2022-22965
https://www.first.org/cvss/
https://github.com/
https://about.gitlab.com/
https://github.com/google/oss-fuzz/tree/master/projects
https://github.com/google/oss-fuzz/tree/master/projects
https://github.com/ImageMagick/ImageMagick/commit/79e5dbcdd1fc2f714f9bae548bc55d5073f3ed20
https://github.com/ImageMagick/ImageMagick/commit/79e5dbcdd1fc2f714f9bae548bc55d5073f3ed20
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.1145/3397271.3401075
https://arxiv.org/abs/1412.6980
https://doi.org/10.1145/3540250.3549081
https://github.com/LibVNC/libvncserver/commit/aac95a9dcf4bbba87b76c72706c3221a842ca433
https://github.com/LibVNC/libvncserver/commit/aac95a9dcf4bbba87b76c72706c3221a842ca433
https://github.com/facebookresearch/faiss
https://nvd.nist.gov/vuln/detail/CVE-2022-0080
https://nvd.nist.gov/vuln/detail/CVE-2015-1867
https://nvd.nist.gov/vuln/detail/CVE-2015-1867
https://redis.io/
https://security.snyk.io/
https://doi.org/10.1145/3460120.3484593
https://github.com/tensorflow/tensorflow/commit/dfa22b348b70bb89d6d6ec0ff53973bacb4f4695
https://github.com/tensorflow/tensorflow/commit/dfa22b348b70bb89d6d6ec0ff53973bacb4f4695
https://github.com/torvalds/linux
https://github.com/torvalds/linux
https://sites.google.com/view/issta2024-patchfinder/home
https://sites.google.com/view/issta2024-patchfinder/home
https://doi.org/10.1145/3540250.3549125

PatchFinder: A Two-Phase Approach to Security Patch Tracing for Disclosed Vulnerabilities in Open-Source So�ware ISSTA ’24, September 16–20, 2024, Vienna, Austria

[51] Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Weinberger, and Yoav
Artzi. 2019. Bertscore: Evaluating text generation with bert. arXiv preprint
arXiv:1904.09675 (2019).

[52] Lida Zhao, Sen Chen, Zhengzi Xu, Chengwei Liu, Lyuye Zhang, Jiahui Wu,
Jun Sun, and Yang Liu. 2023. Software composition analysis for vulnerability
detection: An empirical study on Java projects. In Proceedings of the 31st ACM Joint
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering. 960–972.

[53] Jiayuan Zhou, Michael Pacheco, Jinfu Chen, Xing Hu, Xin Xia, David Lo, and
Ahmed E. Hassan. 2023. CoLeFunDa: Explainable Silent Vulnerability Fix Identi-
�cation. In 2023 IEEE/ACM 45th International Conference on Software Engineering
(ICSE). 2565–2577. https://doi.org/10.1109/ICSE48619.2023.00214

[54] Jiayuan Zhou, Michael Pacheco, Zhiyuan Wan, Xin Xia, David Lo, Yuan Wang,
and Ahmed E Hassan. 2021. Finding a needle in a haystack: Automated mining
of silent vulnerability �xes. In 2021 36th IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 705–716.

[55] Yaqin Zhou and Asankhaya Sharma. 2017. Automated identi�cation of security
issues from commit messages and bug reports. In Proceedings of the 2017 11th
joint meeting on foundations of software engineering. 914–919.

[56] Yaqin Zhou, Jing Kai Siow, Chenyu Wang, Shangqing Liu, and Yang Liu. 2021.
Spi: Automated identi�cation of security patches via commits. ACM Transactions
on Software Engineering and Methodology (TOSEM) 31, 1 (2021), 1–27.

Received 2024-04-12; accepted 2024-07-03

602

https://doi.org/10.1109/ICSE48619.2023.00214

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Large Language Models (LLMs)
	2.2 Problem Definition
	2.3 Motivating Example

	3 Approach
	3.1 Overview
	3.2 Initial Retrieval via Hybrid Retriever
	3.3 Re-ranking via Fine-tuning CodeReviewer

	4 Evaluation
	4.1 Research Questions
	4.2 Dataset
	4.3 Experiment Setup
	4.4 Baselines
	4.5 Evaluation Metrics

	5 Results and Discussion
	5.1 RQ1: Effectiveness Analysis
	5.2 RQ2: Ablation Analysis
	5.3 RQ3: Distribution Analysis
	5.4 RQ4: Practicality Analysis
	5.5 Case Study
	5.6 Discussion on False Negatives

	6 Threats to Validity
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

